$$
\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{4}
$$

shortening C13-O3 and lengthening C13-O4. The ring formed by the dehydration of (I), C15/C20/ 04/C13/C12/C11, is a chroman dihydropyran, which also has a half-chair conformation distorted towards the e, -diplanar form. The displacement asymmetry parameter $\Delta C_{2}=0.155$ (2).

This work was sponsored in part by a grant from the American Heart Association, No. MS-86-G-4.

References

Enraf-Nonius (1987). Structure Determination Package. EnrafNonius, Delft, The Netherlands.

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Ikawa, M., Stahmann, M. \& Link, K. P. (1944). J. Am. Chem. Soc. 66, 902-906.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1 142.
Porter, W. R. \& Trager, W. F. (1977). J. Heterocycl. Chem. 14, 319-320.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Valente, E. J., EgGleston, D. S. \& Schomaker, V. (1986). Acta Cryst. C42, 1809-1813.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1989). C45, 1184-1186

The Mono Diels-Alder Adduct of 1,4-Bis(2,4-cyclopentadien-1-ylidene)cyclohexane and Dimethyl Butynedioate

By Frank R. Fronczek, Mark L. McLaughlin* and John M. Cronan Jr
Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA

(Received 17 August 1988; accepted 10 January 1989)

Abstract

Dimethyl 7-[4-(2,4-cyclopentadien-1-ylidene)cyclohexylidene]bicyclo[2.2.1]hepta-2,5-diene-2,3-dicarboxylate, $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{4}, M_{r}=350 \cdot 4$, triclinic, $P \overline{1}$, $a=8.215$ (1),$\quad b=10.6297$ (9), $c=11.545$ (2) $\AA, \quad \alpha$ $=70.976$ (9), $\quad \beta=75.48$ (1), $\quad \gamma=85.245$ (8) ${ }^{\circ}, \quad V=$ 922.7 (1) $\AA^{3}, \quad Z=2, \quad D_{x}=1.261 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})$ $=1.54184 \AA, \mu=0.658 \mathrm{~mm}^{-1}, \quad F(000)=372, \quad T=$ $296 \mathrm{~K}, R=0.044$ for 3275 data having $F_{o}{ }^{2}>3 \sigma\left(F_{o}{ }^{2}\right)$. The strained double bond exo to the bicyclo[2.2.1]-hepta-2,5-diene has a normal bond length, $1 \cdot 330$ (1) \AA. However, this double bond exhibits severe distortion from $s p^{2}$ hybridized geometry at the bond angle endocyclic to the bicyclo[2.2.1]hepta-2,5-diene, which is $94.76(6)^{\circ}$. The cyclopentadienylidene ring is planar, with maximum deviation of 0.004 (2) \AA.

Introduction. The mono Diels-Alder adduct of 1,4-bis(2,4-cyclopentadien-1-ylidene)cyclohexane and dimethyl butynedioate, shown in Fig. 1, is one of three isomeric products expected from the stoichiometry of this reaction. Other isomers from further intramolecular Diels-Alder cycloadditions of this bifunctional dienophile to the other diene system are not observed. Dimethyl butynedioate is known to act as a bifunctional dienophile for bifunctional Diels-Alder dienes (Paquette, Wyvratt, Berk \& Moerck, 1978).

[^0]0108-2701/89/081184-03\$03.00

The structure of the title compound is being probed to determine whether there is cooperativity of the two 'isolated' chromophores, the fulvene and the strained double bond.

Experimental. The title compound is prepared by refluxing excess 1,4 -bis(2,4-cyclopentadien- 1 -ylidene)cyclohexane with dimethyl butynedioate in chloroform for 72 hours. Clear, yellow-orange crystals, m.p. 370 K , suitable for single-crystal X-ray structure determination were crystallized from hexane/ether at room temperature. The X-ray structure determination supports all standard spectroscopic measurements.

Intensity data were obtained from an irregular fragment of dimensions $0.25 \times 0.45 \times 0.50 \mathrm{~mm}$ mounted in a random orientation on an Enraf-Nonius CAD-4 diffractometer. Cell dimensions were determined at 296 K by a least-squares fit to setting angles of 25 reflections having $25<\theta<30^{\circ}$. A hemisphere of data having $4<2 \theta<150^{\circ}, 0 \leq h \leq 10,-13 \leq k \leq 13$,

Fig. 1. The mono Diels-Alder adduct of 1,4 -bis(2,4 -cyclo-pentadien-1-ylidene)cyclohexane and dimethyl butynedioate.
© 1989 International Union of Crystallography

Table 1. Coordinates and equivalent isotropic thermal parameters

$B_{\text {eq }}=\frac{4}{3}\left(a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+a b \beta_{12} \cos \gamma+a c \beta_{13} \cos \beta+b c \beta_{23} \cos \alpha\right)$.				
	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
O1	$0.7101(2)$	$0.40151(9)$	$0.91901(9)$	$5.41(3)$
O2	$0.9611(2)$	$0.4515(1)$	$0.7883(1)$	$8.58(4)$
O3	$0.4041(1)$	$0.1791(1)$	$0.85314(9)$	$4.68(2)$
O4	$0.5055(2)$	$0.1531(1)$	$1.02164(9)$	$5.82(3)$
C1	$1.3880(2)$	$-0.2967(1)$	$0.7053(1)$	$3.94(3)$
C2	$1.5683(2)$	$-0.2781(2)$	$0.6541(2)$	$5.45(4)$
C3	$1.6322(2)$	$-0.3874(2)$	$0.6243(2)$	$6.66(5)$
C4	$1.4985(2)$	$-0.4805(2)$	$0.6531(2)$	$5.73(4)$
C5	$1.3531(2)$	$-0.4290(1)$	$0.7020(1)$	$4.49(3)$
C6	$1.2748(2)$	$-0.2102(1)$	$0.7440(1)$	$3.97(3)$
C7	$1.3194(2)$	$-0.0732(1)$	$0.7353(2)$	$5.16(4)$
C8	$1.2222(2)$	$0.0316(1)$	$0.6517(2)$	$4.64(3)$
C9	$1.0356(2)$	$0.0066(1)$	$0.6932(1)$	$3.79(3)$
C10	$0.9861(2)$	$-0.1348(1)$	$0.7150(1)$	$4.32(3)$
C11	$1.0904(2)$	$-0.2380(1)$	$0.7937(1)$	$4.62(3)$
C12	$0.9232(2)$	$0.1027(1)$	$0.7014(1)$	$3.76(3)$
C13	$0.7323(2)$	$0.1072(1)$	$0.7228(1)$	$3.80(3)$
C14	$0.7245(2)$	$0.2103(1)$	$0.5942(1)$	$4.80(3)$
C15	$0.8487(2)$	$0.2950(2)$	$0.5629(1)$	$4.99(4)$
C16	$0.9427(2)$	$0.2529(1)$	$0.6696(1)$	$4.07(3)$
C17	$0.8172(2)$	$0.2716(1)$	$0.7863(1)$	$3.70(3)$
C18	$0.6920(2)$	$0.1860(1)$	$0.8179(1)$	$3.49(3)$
C19	$0.8391(2)$	$0.3823(1)$	$0.8320(1)$	$4.28(3)$
C20	$0.7230(3)$	$0.5128(2)$	$0.9624(1)$	$6.13(4)$
C21	$0.5277(2)$	$0.1720(1)$	$0.9108(1)$	$3.69(3)$
C22	$0.2354(2)$	$0.1688(2)$	$0.9306(2)$	$6.27(5)$

Fig. 2. ORTEP drawing (Johnson, 1965) of the molecule, representing C and O atoms by 40% probability ellipsoids and H atoms by circles of arbitrary radius.
$-14 \leq l \leq 14$ was measured using graphite-monochromated $\mathrm{Cu} K \alpha$ radiation. The $\omega-2 \theta$ scans were made at speeds ranging from 0.57 to $3.3^{\circ} \mathrm{min}^{-1}$ to measure all significant data with approximately equal precision. Three standard reflections $(300,020,002)$ exhibited only random variation $\pm 1.6 \%$ in intensity during data collection. Data reduction included corrections for background, Lorentz, polarization and absorption effects. The latter was based on ψ scans, with the minimum relative transmission coefficient 90.46%. Of 3806 unique data, 3275 had $F_{o}{ }^{2}>3 \sigma\left(F_{o}{ }^{2}\right)$ and were used in the refinement.

The space group was determined by successful refinement of a centrosymmetric model. The structure was solved by direct methods and refined by full-matrix least-squares based upon F, with weights $w=$ $4 F_{o}^{2}\left[\sigma^{2}(I)+\left(0.02 F_{o}^{2}\right)^{2}\right]^{-1}$ using the Enraf-Nonius Structure Derermination Package (Frenz, 1985),

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles (${ }^{\circ}$)

O1-C19	1.318 (1)	C8-C9	1.505 (1)
O1-C20	1.447 (1)	C9-C10	1.513 (1)
O2-C19	$1 \cdot 194$ (1)	C9-C12	1.330 (1)
O3-C21	1.333 (1)	C10-C11	1.532 (1)
O3-C22	1.439 (1)	C12-C13	1.525 (1)
O4-C21	$1 \cdot 1963$ (9)	C12-C16	1.530 (1)
C1-C2	1.455 (1)	C13-C14	1.544 (1)
C1-C5	1.472 (1)	C13-C18	1.5446 (9)
C1-C6	1.352 (1)	C14-C15	1.318 (1)
C2-C3	1.347 (2)	C15-C16	1.540 (1)
C3-C4	1.442 (2)	C16-C17	1.537 (1)
C4-C5	1.341 (1)	C17-C18	1.331 (1)
C6-C7	1.496 (1)	C17-C19	1.477 (1)
C6-C11	1.496 (1)	C18-C21	1.482 (1)
C7-C8	1.532 (1)		
C19-O1-C20	116.25 (8)	C8-C9-C10	114.47 (7)
C21-O3-C22	116.45 (8)	C8-C9-C12	122.73 (7)
C2-C1-C5	$105 \cdot 20$ (8)	C10-C9-C12	122.63 (7)
C2-C1-C6	127.80 (8)	C9-C10-C11	112.46 (7)
C5-C1-C6	126.98 (8)	C6-C11-C10	111.77 (7)
C1-C2-C3	108.2 (1)	C9-C12-C13	132.66 (7)
C2-C3-C4	109.42 (9)	C9-C12--C16	131.83 (8)
C3-C4-C5	108.96 (9)	C13-C12-C16	94.76 (6)
C1-C5-C4	108.22 (9)	C12-C13-C14	97.01 (7)
C1-C6-C7	123.46 (8)	C12-C13-C18	98.63 (6)
C1-C6-C11	123.77 (7)	C14-C13-C18	105.43 (6)
C7-C6-C11	112.69 (7)	C13-C14-C15	107.34 (8)
C6-C7-C8	110.46 (7)	C14-C15-C16	107.76 (8)
C7-C8-C9	112.25 (7)	C12-C16-C15	96.67 (7)
C12-C16-C17	98.58 (6)	C17-C18-C21	130.93 (6)
C15-C16-C17	105.99 (7)	O1-C19-O2	123.68 (8)
C16-C17-C18	107.46 (6)	O1-C19-C17	114.38 (7)
C16-C17-C19	120.05 (7)	O2-C19-C17	121.85 (8)
C18-C17-C19	131.97 (7)	O3-C21-O4	123.75 (8)
C13-C18-C17	107.18 (6)	O3-C21-C18	109.52 (6)
C13-C18-C21	121.32 (6)	O4-C21-C18	126.69 (8)
C2-C1-C6-C7	2.4 (2)	C10-C11-C6-C7	55.8 (2)
C6-C7-C8-C9	53.2 (2)	C11-C6-C7-C8	-57.4 (2)
C7-C8-C9-C10	-49.0 (2)	C8-C9-C12-C16	2.9 (2)
C8-C9-C10-C11	46.9 (2)	C16-C17-C19-O2	-7.2(2)
C9-C10-C11-C6	-49.3 (2)	C13-C18-C21-O4	131.3 (2)

scattering factors of Cromer \& Waber (1974), and anomalous coefficients of Cromer (1974). C and O atoms were refined anisotropically; the H atoms were located by ΔF synthesis and were refined isotropically. Final $R=0.044$ ($R=0.051$ for all data), $w R=0.062$, $S=3.602$ for 324 variables. Largest shift 0.08σ in the final cycle, maximum residual density $0.39 \mathrm{e} \AA^{-3}$, minimum $-0.34 \mathrm{e} \AA^{-3}$, extinction coefficient $g=$ $7.0(6) \times 10^{-6}$, where the correction factor $\left(1+g I_{c}\right)^{-1}$ was applied to F_{c}.

Discussion. The fractional coordinates of the title compound are given in Table 1. Fig. 2 is a perspective drawing showing the atom numbering. Distances, angles and selected torsion angles are presented in Table 2.*

[^1]The X-ray structure determination was undertaken to probe the molecule for evidence of an interaction through the carbon σ bonds that allows a significant degree of cooperativity between the two 'isolated' π-electronic systems, the strained double bond and the pentafulvene moiety. The carbon σ bonds C7-C8 and C10-C11 are 1.532 (1) \AA; these bond lengths are not significantly shorter than normal $s p^{3}-s p^{3}$ bond lengths (March, 1985).

There is considerable distortion from ideal $s p^{2}$ hybridization at $\mathrm{C} 9=\mathrm{C} 12$, the double bond fusing the bicyclo[2.2.1]hepta-2,5-diene with the six-membered ring; the bond angle $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 16$ is $94.76(6)^{\circ}$. This degree of distortion is expected to cause this double bond to be exceptionally reactive.

The six-membered ring adopts a chair conformation. The bond angle exocyclic to the fulvene, C7-C6-C11, is $112.69(7)^{\circ}$ which is the same as the analogous bond angle of the precursor difulvene, $112.71(9)^{\circ}$ (McLaughlin, Cronan \& Fronczek, 1988).

A linear $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular contact exists involving carbonyl oxygen O 2 and fulvene carbon C 5 at $x, 1-y, z$. The $C \cdots O$ distance is 3.351 (2) \AA, the $\mathrm{O} \cdots \mathrm{H}$ distance is $2.35(2) \AA$, and the angle at H is $177(2)^{\circ}$. The other carbonyl oxygen, O4, has a closer intermolecular distance, $3 \cdot 307$ (2) \AA, to the methylene

C 7 at $2-x,-y, 2-z$, but the H atom does not point at oxygen: $\mathrm{O} \cdots \mathrm{H}$ is $2.68(2) \AA$, and the angle at H is 118 (2).

Acknowledgement is made to the Donors of The Petroleum Research Fund, administered by the American Chemical Society, for support of this research.

References

Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2B. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Frenz, B. A. (1985). Enraf-Nonius Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
mclaughlin, M. L., Cronan, J. M. Jr \& Fronczek, F. R. (1988). Acta Cryst. C44, 1747-1749.

March, J. (1985). Advanced Organic Chemistry, 3rd ed., p. 19. New York: McGraw-Hill.
Paquette, L. A., Wyvratt, M. J., Berk, H. C. \& Moerck, R. E. (1978). J. Am. Chem. Soc. 100, 5845-5855.

Acta Cryst. (1989). C45, 1186-1189

Structure of $\boldsymbol{O}, \boldsymbol{S}$-Diacetylthiamin

By Whanchul Shin* and Jungwon Choi
Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Korea

(Received 20 August 1988; accepted 4 January 1989)

Abstract

Acetylthio-4-\{ N-[4-amino-2-methyl-5-pyri-midinyl)methyl]formamido\}-3-penten-1-yl acetate, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}, M_{r}=366.45$, monoclinic, $P 2_{1} / n$ with $a=9.086$ (2), $b=19.096$ (5), $c=11.084$ (3) $\AA, \beta=$ $98.49(3)^{\circ}, \quad V=1902 \cdot 1$ (9) $\AA^{3}, \quad Z=4, \quad D_{x}=$ $1.279 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=1.5418 \AA, \mu=16.45 \mathrm{~cm}^{-1}$, $F(000)=776, T=295 \mathrm{~K}, R=0.069$ for 1341 reflections with $I \geq 2 \sigma(I)$. The pyrimidine, N-formyl and ethylenic groups are nearly perpendicular to each other and the $N(3)-C(4)$ bond retains single-bond character. The conformation of the molecule is stabilized by an intramolecular $N\left(4^{\prime} \alpha\right)-H \cdots O(2 \alpha)$ hydrogen bond [2.950 (10) \AA]. The overall conformation is somewhat different from that of its congener O, S-dibenzoyl-

[^2]0108-2701/89/081186-04\$03.00
thiamin. The molecules related by a center of symmetry form a dimer via $\mathrm{N}\left(4^{\prime} \alpha-\mathrm{H} \cdots \mathrm{N}\left(3^{\prime}\right)\right.$ hydrogen bonds $[3.049$ (10) \AA].

Introduction. Thiamin (vitamin B_{1}) is labile against acid, alkali and heat (Dwidevi \& Arnold, 1973). The thiazolium ring in thiamin is easily hydrolyzed in mildly alkaline solution to give various thiol or disulfide derivatives which, in turn, can easily be converted to thiamin upon acidification (Hopmann, 1982). Treatment of a thiol derivative of thiamin with an acylating agent such as acetic anhydride or benzoyl chloride yields the O, S-diacylthiamin such as O, S-diacetylthiamin (DAT) or O, S-dibenzoylthiamin (DBT). These O, S-diacylthiamins as well as the disulfide derivatives are potential prodrugs because they pass through (C) 1989 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of H -atom coordinates and thermal parameters, distances and angles involving H atoms, anisotropic thermal parameters and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51787 (37 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

